skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shumway, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Expansive Framing (EF) is a theory and an instructional technique to facilitate connections between content and contexts. We employed EF as an approach to create a series of integrated mathematics and computer science (CS) lessons, using digital technology as a tool to leverage shared mathematical and computational ideas. We used deductive theoretical qualitative analysis of transcripts of classroom implementations to investigate how two fifth-grade teachers and one computer lab paraprofessional educator used EF during their teaching and what the EF approach looked like in practice. Findings suggested that educators engaged in EF principles when they were present in curricular materials, yet they also made additional impromptu (albeit school-based) expansive connections. The teachers in the study also regularly framed students as authors and owners of new knowledge. We recommend that mathematics-CS integrated curricular materials include language and other supports that make unambiguous, specific connections across learning contexts. We posit that EF theory can be a support to educators in the integration of mathematics and coding instruction with digital technology. 
    more » « less
    Free, publicly-accessible full text available June 15, 2026
  2. Using activity theory as a lens, we aimed to understand what second-grade students’ interactions revealed about their thinking and what mediated students’ engagement with important multiplicative ideas. In this setting, students interacted with multiplicative thinking using a coding robot and other artifacts as mediating tools. Through qualitative analysis, we found that students interacted with three concepts related to multiplicative thinking (i.e., composite units, doubling, iterating), and the lead mediators in their interactions included the robot’s remote, dry erase marker and table, and peers/teacher. Students gravitated to artifacts that made sense to them, and the implication is that students need agency in opportunities to use artifacts and have interactions with rules and the community to make meaning of complex mathematical ideas. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  3. This paper uses interaction analysis to examine an episode moment-by-moment of how a group of educators recognized and acknowledged that a specific design decision could be harmful for a historically marginalized population of students enrolled in the district. However, once a key change was made to be more culturally responsive and considerate, new and unexpected pedagogical challenges appeared. This case serves to illustrate some of the unexpected tensions that can appear in real-time when unanticipated questions about cultural relevance are foregrounded during lesson and materials co-design. It also serves as a reminder that educational technologies are not “race” neutral. 
    more » « less
  4. Collaborative design, or “co-design”, is a term that has gained popularity in educational research and design communities, including those working with K-12 educators. While more groups are identifying with and pursuing co-design, much remains to be understood about how to structure the work within given different constraints, circumstances, and resources available to different parties. We propose understanding co-design as having inherent asymmetries and that structuring co-design work patterns involves negotiation of those asymmetries. Through a case of an elementary computer science and math integration research-practice partnership, we share ways that those asymmetries are both intentionally softened and leveraged at different times. 
    more » « less
  5. In the United States, school curricula are often created and taught with distinct boundaries between disciplines. This division between curricular areas may serve as a hindrance to students’ long-term learning and their ability to generalize. In contrast, cross-curricular pedagogy provides a way for students to think beyond the classroom walls and make important connections across disciplines. The purpose of this paper is a theoretical reflection on our use of Expansive Framing in our design of lessons across learning environments within the school. We provide a narrative account of our early work in using this theoretical framework to co-plan and enact interdisciplinary mathematics and computer science (CS) tasks with a team of elementary school educators and school district personnel. The unit focuses on the concepts of exponents in mathematics and repeat loops as a control structure in computer science. Using a narrative approach, we describe what occurred during the collaborative planning of lessons and subsequent enactments in two fifth-grade classrooms and one computer lab and provide a practitioner‑oriented account of our experience. 
    more » « less
  6. The learning sciences community is currently exploring new ways to enact productive and equitable co-design research-practice partnerships that are sensitive to all the concerns and needs of stakeholders. The paper contributes to that still-growing literature through an interaction analysis of a co-design discussion involving school district partners that unfolded about cultural relevance and sensitivity in relation to the use of a specific image in an elementary school coding lesson. The episode involved looking moment-by-moment at how district educators recognized and acknowledged that a specific design decision could be harmful for a minoritized population of students enrolled in the district. However, once a key change was made to be more culturally responsive and considerate, new and unexpected pedagogical challenges appeared. This case serves to illustrate some of the unexpected tensions that can appear in real-time when unanticipated questions about cultural relevance are foregrounded during lesson and materials co-design. 
    more » « less
  7. This study examines how a rural-serving school district aimed to provide elementary-level computer science (CS) by offering instruction during students’ computer lab time. As part of a research-practice partnership, cross-context mathematics and CS lessons were co-designed to expansively frame and highlight connections across – as opposed to integration within – the two subjects. Findings indicated that most students who engaged with the lessons across the lab and classroom contexts reported finding the lessons interesting, seeing connections to their mathematics classes, and understanding the programming. In contrast, a three-level logistic regression model showed that students who only learned about mathematics connections within the CS lessons (thus not in a cross-context way) reported statistically significant lower levels of interest, connections, and understanding. 
    more » « less
  8. Purpose Much remains unknown about how young children orient to computational objects and how we as learning scientists can orient to young children as computational thinkers. While some research exists on how children learn programming, very little has been written about how they learn the technical skills needed to operate technologies or to fix breakdowns that occur in the code or the machine. The purpose of this study is to explore how children perform technical knowledge in tangible programming environments. Design/methodology/approach The current study examines the organization of young children’s technical knowledge in the context of a design-based study of Kindergarteners learning to code using robot coding toys, where groups of children collaboratively debugged programs. The authors conducted iterative rounds of qualitative coding of video recordings in kindergarten classrooms and interaction analysis of children using coding robots. Findings The authors found that as children repaired bugs at the level of the program and at the level of the physical apparatus, they were performing essential technical knowledge; the authors focus on how demonstrating technical knowledge was organized pedagogically and collectively achieved. Originality/value Drawing broadly from studies of the social organization of technical work in professional settings, we argue that technical knowledge is easy to overlook but essential for learning to repair programs. The authors suggest how tangible programming environments represent pedagogically important contexts for dis-embedding young children’s essential technical knowledge from the more abstract knowledge of programming. 
    more » « less